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Abstract. The q-special functions appear naturally in q-deformed quantum mechanics and both sides
profit from this fact. Here we study the relation between the q-deformed harmonic oscillator and the
q-Hermite polynomials. We discuss: recursion formula, generating function, Christoffel-Darboux identity,
orthogonality relations and the moment functional.

1 Introduction
In the mathematical literature q-special functions have
been studied very intensively [3]. It turns out that these
functions appear in q-quantum mechanics when we try
to diagonalize selfadjoint operators [2]. Due to the alge-
braic nature of q-quantum mechanics many properties of
these systems can be derived from the algebraic structure.
This in turn implies special properties of the respective q-
special functions and would be hard to prove differently. A
trivial example is the harmonic oscillator (q = 1) with its
creation and annihilation operators on the algebraic side
and the Hermite polynomials on the other.

In this short note we generalize this idea to the q-
deformed harmonic oscillator where q-deformed Hermite
polynomials appear in the eigenfunctions of the Hamilto-
nian [1]. A recursion formula for the q-Hermite polyno-
mials follows directly from the construction of the eigen-
states.

In Chap. 2 we solve this recursion formula explicitly
and present a generating function of the q-Hermite poly-
nomials. We also show that the Christoffel-Darboux iden-
tity follows from the recursion formula. We were, however,
not able to prove the completeness of the polynomials with
the help of this identity. From the work on the harmonic
oscillator [1] we actually suspect that the q-Hermite poly-
nomials are not a complete set of functions.

In Chap. 3 we give an explicit representation of the
eigenstates of the q-harmonic oscillator in terms of the
eigenstates of the coordinates. This then yields orthogo-
nality relations for the q-Hermite polynomials which we
derive in Chap. 4. It is interesting that there are two dif-
ferent measures by which the q-Hermite polynomials form
an orthogonal set of functions. This again indicates the
fact that the polynomials are not complete.

In Chap. 5 we use the matrix elements of powers of the
coordinates to define a moment functional. As expected
there are two different measures for this functional but
the moment functional is independent of the choice of the
measure.

Finally we use this moment functional to define an
integral and we give its values in terms of the q-gamma
function.

2 q-deformed Hermite polynomials

In the analysis of the q-deformed harmonic oscillator, as
it was done in [1], the following recursion formula for the
Hermite-polynomials occurs:

H
(q)
n+1(ξ)−q− 1

2 q−2n2ξH(q)
n (ξ)+2q−2[n]H(q)

n−1(ξ) = 0 (2.1)

The q-number [n] is defined as follows:

[n] ≡ [n]q−2 =
1 − q−2n

1 − q−2 (2.2)

We define the first two polynomials consistent with H−1 =
0:

H
(q)
0 (ξ) = 1, H

(q)
1 (ξ) = 2q− 1

2 ξ (2.3)

and obtain the next poynomials:

H
(q)
2 (ξ) = 4q−3ξ2 − 2q−2

H
(q)
3 (ξ) = 8q− 1

2 q−7ξ3 − 4q− 1
2 q−2[3]ξ (2.4)

H
(q)
4 (ξ) = 16q−14ξ4 − 8q−5[3](q−4 + 1)ξ2 + 4q−4[3]

A general expression is:

H(q)
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(2.5)
The symbol < n

2 ] means the largest integer smaller or
equal n

2 . In the limit q → 1 we obtain from (2.5) the
undeformed Hermite polynomials. A generating function
for these q-Hermite polynomials has been found in [4]:
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The exponential functions are defined as follows:
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∞∑

n=0

q−2(n
2)

(q−2; q−2)n
tn

eq−4(t) =
∞∑

n=0

tn

(q−4; q−4)n
(2.7)

In the classical theory of orthogonal polynomials the
Christoffel-Darboux identity [5] is derived from a recursion
relation.

The deduction of this identity for the q-deformed Her-
mite polynomials follows exactly the same steps as in the
undeformed case. The result is:

n∑
m=0

Hm(ξσ
µ)Hm(ξτ

ν )
2m[m]!

=
q

1
2 q2n

2n+1[n]!
Hn+1(ξσ

µ)Hn(ξτ
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ν )Hn(ξσ
µ)

(ξσ
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ν )
(2.8)

For the classical polynomials this identity has been used to
prove completenes of the polynomials [6]. In the deformed
case the question of completeness is still open.

In the mathematical literature the q-Hermite II poly-
nomials h̃n have been studied [3]. They are related to our
polynomials as follows:

H(q)
n (ξ) =

q−n2
2

n
2

(1 − q−2)
n
2

h̃n(x′; q−2) (2.9)

with the rescalation:

x′ =
√

2(q − q−1) ξ

3 Eigenstates of the q-deformed harmonic
oscillator

Here we are going to exploit the fact that the Hermite
polynomials are part of the Eigenfunctions of the Hamil-
tonian of the q-deformed harmonic oscillator [1]. This os-
cillator is realized in the Hilbert space of the q-deformed
Heisenberg algebra:

q
1
2 XP − q− 1

2 PX = iU (3.1)

The momentum operator has the following eigenvectors
and eigenstates:

P |l, σ〉 = σql|l, σ〉
l = −∞ . . .∞, σ = ±1 (3.2)

〈l′, σ′|l, σ〉 = δl′lδσ′σ

For the coordinates we find:

X|ν, τ〉 = −τ
qν− 1

2

q − q−1 |ν, τ〉
ν = −∞ . . .∞, τ = ±1 (3.3)

〈ν′, τ ′|ν, τ〉 = δν′νδτ ′τ

The operator U acts on these states as follows:

U |l, σ〉 = |l − 1, σ〉 momentum
U |ν, τ〉 = |ν + 1, τ〉 coordinates (3.4)

These two systems of eigenfunctions are related by the
q-Fourier transformation:

|2l, σ〉 =
Nq

2

∞∑
ν=−∞
τ=+,−

qν+l
{

cosq 2(ν + l)

−iστ sinq 2(ν + l)U
}

|2ν, τ〉
|2l + 1, σ〉 = U−1|2l, σ〉 (3.5)

The q-trigonometric functions are:

cosq(2ν) ≡ cos(q2ν ; q−4)

sinq(2ν) ≡ sin(q2ν ; q−4) (3.6)

and

Nq ≡ (q−2; q−4)∞
(q−4; q−4)∞

(3.7)

This is in the notation defined in [7].The q-trigonometric
functions satisfy the completeness and orthogonality rela-
tions:

+∞∑
n=−∞

q−2n cosq(−2(k + n)) cosq(−2(l + n)) =
1

N2
q

q2lδkl

(3.8)
+∞∑

n=−∞
q−2n sinq(−2(k + n)) sinq(−2(l + n)) =

1
N2

q
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The eigenfunctions of the harmonic oscillator have been
defined in [1]. They are degenerate:

|n〉r =
1√

2n[n]!
H(q)

n (X)|0〉r (3.9)

with
n = 0, 1, . . .∞, r = 0, 1

The polynomials H
(q)
n (X) are functions of the coordinate

operator X. The ground state, however, is easy to define
in the momentum representation (3.2):

|0〉r =
1√
2

∞∑
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(−1)lσl+rq− 1
2 (l2+l)c0|l, σ〉 (3.10)

We can Fourier transform these ground states to the X
basis using (3.5). With the definition:

cl = q− 1
2 (l2+l)c0

the Fourier coefficients are:

〈2ν, τ |0〉0 =
Nq√

2

∞∑
l=−∞

qν+l
(
c2l cosq 2(ν + l)

+iτc2l+1 sinq 2(ν + l)
)

〈2ν + 1, τ |0〉0 = 0 (3.11)
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and:

〈2ν + 1, τ |0〉1 = −Nq√
2

∞∑
l=−∞

qν+l
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)

〈2ν, τ |0〉1 = 0 (3.12)

4 Orthogonality relations

The eigenstates (3.9) are orthogonal.

δnmδrr′ = r′〈n|m〉r

= Knm
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m (X)|0〉r (4.1)

= Knm

∞∑
ν=−∞
τ=+,−

H(q)
n (ξν,τ )H(q)
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with

ξν,τ = −τ
qν− 1

2

q − q−1

and
Knm =

1√
2n+m[n]![m]!

We see that depending on r only the even or odd integers
ν contribute to the sum and we obtain two orthogonality
relations:

∞∑
ν=−∞
τ=+,−

H(q)
n (ξ2ν,τ )H(q)

m (ξ2ν,τ )|〈2ν, τ |0〉0|2

= 2n[n]!δnm
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H(q)
n (ξ2ν+1,τ )H(q)

m (ξ2ν+1,τ )|〈2ν + 1, τ |0〉1|2

= 2n[n]!δnm (4.2)

These are two orthogonality relations for the q-deformed
Hermite polynomials with the two measures:

µ0(2ν) = |〈2ν, τ |0〉0|2 µ0(2ν + 1) = 0
µ1(2ν + 1) = |〈2ν + 1, τ |0〉1|2 µ1(2ν) = 0 (4.3)

These measures are independant of τ . For the q-Hermite II
polynomials h̃n of the mathematical literature (cf. (2.9))
the following orthogonality relation is given [3]:

Ñq
(q; q)n

qn2 δnm =
∞∑

k=−∞

[
h̃n(qk; q)h̃m(qk; q)

+h̃n(−qk; q)h̃m(−qk; q)
]
ω(qk)qk (4.4)

here Ñq is a normalisation constant independent of n and
the summation is over all numbers. The measure is given
by:

ω(qk) =
1

(−q2k; q2)∞
(4.5)

5 The moment functional

The groundstate expectation value of ξn can be computed.
We proceed as follows: First we expand ξn in terms of the
q-Hermite polynomials:

ξn =
n∑

k=0

b
(n)
k H

(q)
k (ξ) (5.1)

The exited states of the harmonic oscillator are given in
terms of the Hermite polynomials (3.9). They are orthog-
onal to the groundstate. We conclude:

r〈0|ξn|0〉r = b
(n)
0 (5.2)

This is independent of r. With the help of the generating
function of the q-Hermite polynomials (2.6) it is possible
to calculate the coefficients b

(n)
0 explicitly. Inserting the

definition of the q-exponentials into (2.6) we get:
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q
n
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n (ξ)tn
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=
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n−jq−4(j
2)(−1)jqjt2j
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=
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k
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For the last step we changed the summation over n to
the summation over k with n = k − j. On both sides are
polynomials in t. Comparing the coefficients yields:
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2)ξk
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=
< k
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j=0

q
k
2 2−k+jq−4(j
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(q)
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and therefore
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2)q2(k
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H

(q)
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This is the linear combination (5.1). Putting the different
powers of q together we finally get:
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k
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We see that for odd powers ξ2n+1 the coefficients b
(2n+1)
0

vanish. For even powers we get:

b
(2n)
0 =

q(
2n
2 )(q−2; q−2)2n

2n(q−4; q−4)n(1 − q−2)n

=
q(

2n
2 )

2n
[1][3] . . . [2n − 1] (5.6)

We know how to compute the groundstates in a basis
where ξ is diagonal, the coefficients for the expansion have
been calculated and are explicitly given by (3.11, 3.12). We
obtain:

b
(2n)
0 =

∞∑
ν=−∞
τ=+,−

(ξν,τ )2n|〈ν, τ |0〉r|2 (5.7)

More explicitely we find for r = 0:

b
(2n)
0 = N2

q

∞∑
ν,j,k=−∞

(ξ2ν,τ )2nq2ν+j+k

·(c2jc2k cosq 2(ν + j) cosq 2(ν + k) (5.8)

+c2j+1c2k+1 sinq 2(ν + j) sinq 2(ν + k)
)

and for r = 1:

b
(2n)
0 = N2

q

∞∑
ν,j,k=−∞

(ξ2ν+1,τ )2nq2ν+j+k

·(c2jc2k sinq 2(ν + j) sinq 2(ν + k) (5.9)

+c2j+1c2k+1q
2 cosq 2(ν + j + 1) cosq 2(ν + k + 1)

)
The expansion (5.7) can be interpreted as an integral with
the measures:

dqµ
r(ξ) = |〈ν, τ |0〉r|2 (5.10)

These are two different measures, for r = 0 the measure
is different from zero only for even values of ν, for r = 1
only for odd values of ν.

We have obtained the following moment functionals:

L[ξ2n] =
∫

ξ2n dqµ
r(ξ) =

q(
2n
2 )

2n
[1][3] . . . [2n − 1]

L[ξ2n+1] =
∫

ξ2n+1 dqµ
r(ξ) = 0 (5.11)

Although we have two different measures the calculation
shows that the moment functional is independent of the
specific measure. All that enters into the moment func-
tional is the normalisation of the measure.

That is exactly what is stated by Favards theorem [8].
It postulates the existence of a unique moment functional
for any polynomial sequence that is given by a three-
term recurrence relation without saying anything about
the measure, not even about a possible uniqueness.

All classical orthogonal polynomials are orthogonal
with respect to a unique measure, but for q-polynomials
this is not the case (e.g. the q-Laguerre polynomials) [8].
It seems that by a q-quantum mechanical argumentation
we have found another example.

5.1 The q-gamma function

In this section we want to give the result of the last sec-
tion – the moment functional – in terms of a q-deformed
gamma function: Γq(x). This function is defined by (0 <
q < 1) [8]:

Γq(x) ≡ (q; q)∞
(qx; q)∞

(1 − q)1−x (5.12)

In [8] also the classical limit q → 1 to the undeformed
gamma function and some of its properties are given.

With the help of the identity:
[
n

2

]
q−4

=
1 − q−2n

1 − q−4 =
1 − q−2n

1 − q−2

1 − q−2

1 − q−4

=
[n]q−2

[2]q−2
=

[n]
[2]

(5.13)

and the functional equation for the q-gamma function we
find the result:

Γq−4(
2n + 1

2
)

=
[
2n − 1

2

]
q−4

[
2n − 3

2

]
q−4

. . .

[
1
2

]
q−4

Γq−4(
1
2
)

=
[2n − 1][2n − 3] . . . [3][1]Γq−4( 1

2 )
[2]n

(5.14)

Hence the moment functional for the q-Hermite polyno-
mials can be expressed by the q-gamma function:

∫
ξ2n dqµ

r(ξ) =
q(

2n
2 )

2n

[2]n

Γq−4( 1
2 )

Γq−4(
2n + 1

2
)

∫
ξ2n+1 dqµ

r(ξ) = 0
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